The Edge Coloring Game on Extended Stars

Tyler Hays and Luke Naftz

Linfield College
University of California Berkeley
University of Colorado Denver

August 9, 2012
WiVaM REU-RET
Willamette University
Outline

1. Competitive Coloring
 - Basic Definitions
 - The Game
 - Extended Stars
 - Partial Extended Stars
 - Future Work
1 Competitive Coloring

- Basic Definitions
 - The Game
 - Extended Stars
 - Partial Extended Stars
 - Future Work
A graph G is a finite set of vertices and edges. We will denote the maximum degree of G by $\Delta(G)$. We say that a graph T is a tree if it is connected and acyclic, meaning it has no cycles.
Definitions

- A graph G is a finite set of vertices and edges.
- We will denote the maximum degree of G by $\Delta(G)$.
- We say that a graph T is a tree if it is connected and acyclic, meaning it has no cycles.
A graph G is a finite set of vertices and edges. We will denote the maximum degree of G by $\Delta(G)$. We say that a graph T is a tree if it is connected and acyclic, meaning it has no cycles.
Outline

1. Competitive Coloring
 - Basic Definitions
 - The Game
 - Extended Stars
 - Partial Extended Stars
 - Future Work
The Set-Up

- A finite graph G
- A set X of r colors
- Two players: Alice and Bob
The Set-Up

- A finite graph G
- A set X of r colors
- Two players: Alice and Bob
The Set-Up

- A finite graph G
- A set X of r colors
- Two players: Alice and Bob
Alice and Bob alternate coloring the uncolored edges of G.

At each step, each must use a legal color.

A color α in X is legal for an uncolored edge e if e has no neighbors already colored α.
Game Time

- Alice and Bob alternate coloring the uncolored edges of G.
- At each step, each must use a legal color.
- A color α in X is legal for an uncolored edge e if e has no neighbors already colored α.
Game Time

- Alice and Bob alternate coloring the uncolored edges of G.
- At each step, each must use a legal color.
- A color α in X is **legal** for an uncolored edge e if e has no neighbors already colored α.

T. Hays, L. Naftz
Competitive Graph Coloring
Winners and Losers

- Alice wins the game if all edges of G are eventually colored.
- Bob wins if there comes a time in the game when there is an uncolored edge e for which there is no legal color.
- The least r such that Alice has a winning strategy is called the game chromatic index of G, denoted $\chi_g'(G)$.
Winners and Losers

- Alice wins the game if all edges of G are eventually colored.
- Bob wins if there comes a time in the game when there is an uncolored edge e for which there is no legal color.
- The least r such that Alice has a winning strategy is called the game chromatic index of G, denoted $\chi_g'(G)$.
Alice wins the game if all edges of G are eventually colored.

Bob wins if there comes a time in the game when there is an uncolored edge e for which there is no legal color.

The least r such that Alice has a winning strategy is called the game chromatic index of G, denoted $\chi_g'(G)$.

\[\chi_g'(G) \]
An Example of an edge coloring game

Figure: Beginning of the game
An Example of an edge coloring game

Figure: Alice's first turn.
An Example of an edge coloring game

Figure: Bob’s first turn.
An Example of an edge coloring game

Figure: Alice’s next turn.
An Example of an edge coloring game

Figure: Bob’s next turn.
An Example of an edge coloring game

Figure: Alice colors another edge.
An Example of an edge coloring game

Figure: We jump ahead, Bob plays.
Figure: Bob colors again, and Alice wins with $r = 5$.
Cai and Zhu proved the following theorem:

Theorem

If T is a tree, then $\chi_g'(T) \leq \Delta(T) + 2$.

This theorem brought up the question:

Question

Does there exist a tree such that $\chi_g'(T) = \Delta(T) + 2$?
Cai and Zhu proved the following theorem:

Theorem

If T is a tree, then $\chi_g'(T) \leq \Delta(T) + 2$.

This theorem brought up the question:

Question

Does there exist a tree such that $\chi_g'(T) = \Delta(T) + 2$?
Cai and Zhu proved the following theorem:

Theorem

If T *is a tree, then* $\chi_g'(T) \leq \Delta(T) + 2$.

This theorem brought up the question:

Question

Does there exist a tree such that $\chi_g'(T) = \Delta(T) + 2$?
Outline

1. Competitive Coloring
 - Basic Definitions
 - The Game
 - Extended Stars
 - Partial Extended Stars
 - Future Work
We say that a tree \(T \) is an extended star if \(\text{diam}(T) = 4 \), there exists a unique vertex \(v \in V(T) \) such that \(d(v) = \Delta(T) \), and for each \(u \in N(v) \), \(d(u) \geq 3 \).

- An internal edge is an edge that is incident with \(v \).
- An external edge is an edge that is not incident with \(v \).
The Game Chromatic Index

Theorem

If T is an extended star, then $\chi_g'(T) = \Delta(T) + 1$.

To show that this is true we must present a strategy for Alice to win with $\Delta(T) + 1$ colors, and a strategy for Bob to win with $\Delta(T)$ colors.
The Game Chromatic Index

Theorem

If T is an extended star, then $\chi'_g(T) = \Delta(T) + 1$.

To show that this is true we must present a strategy for Alice to win with $\Delta(T) + 1$ colors, and a strategy for Bob to win with $\Delta(T)$ colors.
Our Extended Star
Alice’s Strategy

- We assume that $r = \Delta(T) + 1$.
- Alice will begin by coloring an internal edge.
- Alice will simply color an internal edge.
- If all internal edges have been colored, Alice will color an external edge.
Alice’s Strategy

- We assume that $r = \Delta(T) + 1$.
- Alice will begin by coloring an internal edge.
 - Alice will simply color an internal edge.
 - If all internal edges have been colored, Alice will color an external edge.
Alice’s Strategy

- We assume that \(r = \Delta(T) + 1 \).
- Alice will begin by coloring an internal edge.
- Alice will simply color an internal edge.
- If all internal edges have been colored, Alice will color an external edge.
Alice’s Strategy

- We assume that \(r = \Delta(T) + 1 \).
- Alice will begin by coloring an internal edge.
- Alice will simply color an internal edge.
- If all internal edges have been colored, Alice will color an external edge.
Playout For Alice’s Strategy
Alice colors first
Alice Colors
Bob Colors
Alice Colors
Bob Colors
Competitive Coloring

Alice Colors

T. Hays, L. Naftz

Competitive Graph Coloring
Now all that is left is to color the remaining external edges.
Bob’s Strategy

- We want to Alice and Bob to play with $r = \Delta(T)$.
- Alice will color first.
Bob’s Strategy

- We want to Alice and Bob to play with $r = \Delta(T)$.
- Alice will color first.
Bob’s Strategy

- If Alice colors on an external edge, and there are more than two uncolored internal edges left, Bob will color the incident internal edge.

Example
Bob’s Strategy

- If Alice colors on an external edge, and there are more than two uncolored internal edges left, Bob will color the incident internal edge.

Example
Bob’s Strategy

- If Alice colors on an external edge, and there are more than two uncolored internal edges left, Bob will color the incident internal edge.

Example
Bob’s Strategy

- If Alice colors an internal edge, and there are more than two uncolored internal edges left, Bob will color an internal edge.

Example
Bob’s Strategy

- If Alice colors an internal edge, and there are more than two uncolored internal edges left, Bob will color an internal edge.

Example
Bob’s Strategy

- If Alice colors an internal edge, and there are more than two uncolored internal edges left, Bob will color an internal edge.

Example
Bob’s Strategy

- If Bob follows the above strategy the game will eventually come to a point where there are two uncolored internal edges, e and f that are both incident with at least two uncolored external edges, e_1, e_2, f_1, f_2.

- Since e and f are the only two uncolored internal edges left, there will only be two legal colors for e and f, we will say blue and green.
Alice colors f with blue.
Bob colors e_2 with green.
Alice colors f_2 with an already used color.
Bob colors e_2 with blue.
If Alice colors f with blue.
Bob will color e_1 with green winning.
What if Alice colors \(e \) green?
Bob will color f_1 blue.
As we have shown strategies for Bob and Alice we have proved our theorem.

Theorem

If T is an extended star, then $\chi'_g(T) = \Delta(T) + 1$.
As we have shown strategies for Bob and Alice we have proved our theorem.

Theorem

*If T is an extended star, then $\chi'_g(T) = \Delta(T) + 1$.***
1 Competitive Coloring

- Basic Definitions
- The Game
- Extended Stars
- Partial Extended Stars
- Future Work
We say that T is a **partial extended star** if $\text{diam}(T) = 4$, there exists a unique vertex $v \in V(T)$ such that $d(v) = \Delta(T)$, and for each $u \in N(v)$, $d(u) \geq 2$.
We will call the vertices that are incident with exactly one external edge **weak vertices**, and all others, except the center, is a **strong vertices**.
Theorem

If T is a partial extended star with fewer than $\lceil \Delta(T)/2 \rceil$ weak vertices, then $\chi_{g'}(T) = \Delta(T) + 1$.

Theorem

If T is a partial extended star with more than $\lceil \Delta(T)/2 \rceil$ weak vertices, then the $\chi_{g'}(T) = \Delta(T)$.
Theorem

If T is a partial extended star with fewer than $\lfloor \Delta(T)/2 \rfloor$ weak vertices, then $\chi_g'(T) = \Delta(T) + 1$.

Theorem

If T is a partial extended star with more than $\lfloor \Delta(T)/2 \rfloor$ weak vertices, then the $\chi_g'(T) = \Delta(T)$.
Outline

1. Competitive Coloring
 - Basic Definitions
 - The Game
 - Extended Stars
 - Partial Extended Stars
 - Future Work
We wish to further study partial extended stars, mostly to attempt to prove the following conjecture.

Conjecture

Let T be a partial extended star, if the number of weak vertices is equal to $\lfloor \Delta(T)/2 \rfloor$, then $\chi_g'(T) = \Delta(T)$.

We also still wish to find the case of a tree T such that $\chi_g'(T) = \Delta(T) + 2$.
We wish to further study partial extended stars, mostly to attempt to prove the following conjecture.

Conjecture

Let T be a partial extended star, if the number of weak vertices is equal to $\left\lfloor \Delta(T)/2 \right\rfloor$, then $\chi_g'(T) = \Delta(T)$.

We also still wish to find the case of a tree T such that $\chi_g'(T) = \Delta(T) + 2$.
We wish to further study partial extended stars, mostly to attempt to prove the following conjecture.

Conjecture

Let T be a partial extended star, if the number of weak vertices is equal to $\left\lfloor \frac{\Delta(T)}{2} \right\rfloor$, then $\chi_g'(T) = \Delta(T)$.

We also still wish to find the case of a tree T such that $\chi_g'(T) = \Delta(T) + 2$.

References